STEREOSPECIFIC DISPLACEMENTS OF p-toluenesulfonate and iodide ions with organolithium reagents

W. D. Korte and L. Kinner

Department of Chemistry, Chico State College, Chico, California

W. C. Kaska

Department of Chemistry, University of California, Santa Barbara, California (Received in USA 15 December 1969; received in UK for publication 10 January 1970)

Several recent studies have shown that Wurtz type coupling reactions between alkyllithium reagents and alkylhalides proceed by two one-electron transfer processes rather than a direct nucleophilic displacement.¹ However, certain charge delocalized organolithium reagents displace the bromide and chloride leaving groups from secondary carbon with a high degree of stereospecificity indicating typical S_n^2 type displacement.²

We have found that allyllithium also displaces both the p-toluenesulfonate and iodide leaving groups from secondary carbon with a high degree of stereospecificity, 93% and 90% inversion of configuration, respectively.³ 2-Octyl tosylate was prepared from (-)2-octanol, $[\alpha]_D$ -8.0° (neat), and treated with allyllithium in ethyl ether solvent at 20° C. to give (-)4-methyl-1-decene, $[\alpha]_D$ -5.25° (neat), n_D^{25} 1.4246 (Lit.⁶ $[\alpha]_D$ -7.0° (neat), n_D^{25} 1.4246) in at least 60% yield.⁷ (+)2-Iodooctane, α_D +45.8° (neat), coupled with allyllithium to give (+)4-methyl-1-decene, $[\alpha]_D$ +4.5° (neat), n_D^{25} 1.4244, in at least a 65% yield.⁷

 $(-)^{2}-C_{8}H_{17}OH \xrightarrow{CH_{3}C_{6}H_{4}SO_{2}C1} (-)^{2}-CH_{3}C_{6}H_{4}SO_{3}C_{8}H_{17} \xrightarrow{CH_{2}=CHCH_{2}Li} (-)^{2}-CH_{3}C_{6}H_{4}SO_{3}C_{8}H_{17} \xrightarrow{CH_{17}OH} (-)^{2}CH_{13}CH(CH_{3})CH_{2}CH=CH_{2}$

The relative configuration of 2-octyl tosylate, 2-iodooctane, and 4-methyl-1-decene can be rigorously shown. (-)2-Bromooctane has been related to (-)4-methyl-1-decene,⁶ and

(+)2-bromooctane, (+)2-iodooctane, and (+)2-octanol have the same configuration.⁸ Therefore, both reactions with allyllithium must proceed with inversion of configuration.

The high degree of stereospecificity of these reactions is expected if the coupling reactions are proceeding by an S_N^2 pathway involving a rate controlling transition state similar to that suggested by Eastham and Gibson.⁹

A similar high degree of stereospecificity with yields of at least 60% was also observed for the reactions of another charge-delocalized organolithium reagent, benzyllithium, with 2-octyl tosylate and 2-iodooctane. All charge delocalized organolithium reagents, however, do not appear to react with such high yields with tosylates since Meyers and coworkers¹⁰ indicate that the yield of coupled product for the reaction of the lithio salt of 2,4,4,6-tetramethyl-5,6-dihydro-1,3(4H)-oxazine with butyl tosylate was very low. The good yields of coupled products make allyllithium an attractive reagent for extending carbon chains by three carbons as well as adding a versatile functional group.

We acknowledge the support of the American Chemical Society-Petroleum Research Fund and the Research Corporation, Burlingame, California.

References

- G. A. Russell and D. W. Lamson, J. Am. Chem. Soc., 91, 3967 (1969); A. R. Lepley, Chem. Comm. 64 (1969); A. R. Lepley and R. L. Landau, J. Am. Chem. Soc., 91, 748 (1969); H. R. Ward, R. B. Lawler, and R. A. Cooper, <u>ibid.</u>, 91, 746 (1969), and references in these papers.
- 2. L. H. Sommer and W. D. Korte, J. Org. Chem., in press.
- 3. The stereospecificity of these reactions was based on the following maximum rotations of reactants and products: 2-octanol, $[\alpha]_D 9.9^\circ$ (neat),⁴ 2-iodooctane, $\alpha_D 64.2^\circ$ (neat),⁵ and 4-methyl-1-decene, $[\alpha]_D 7.0^\circ$ (neat).⁶
- 4. J. Kenyon in Organic Synthesis, Coll. Vol. I, John Wiley & Sons, Inc., New York, N. Y., 1947, p. 418.
- 5. H. M. R. Hoffmann, J. Chem. Soc., 1249 (1964).
- 6. R. L. Letsinger and J. G. Traynham, J. Am. Chem. Soc., 72, 849 (1950).
- 7. These yields represent the middle cut of a fractional distillation and are minimums for the reaction conditions.
- 8. A. J. H. Houssa, J. Kenyon, and H. Philips, J. Chem. Soc., 1700 (1929).
- 9. J. F. Eastham and G. W. Gibson, J. Am. Chem. Soc., 85, 2172 (1963).
- 10. A. I. Meyers, and A. Nabeya, H. W. Adickes, I. R. Politzer, ibid., 91, 763 (1969).